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Abstract 
 

Building and maintaining the class hierarchy has been recognized as an important but one of the most 

difficult activities of object-oriented design. Concept (or Galois) lattices and variant structures are 

presented as a framework for dealing with the design and maintenance of class hierarchies. Because the 

design of class hierarchies is inherently an iterative and incremental process, we designed incremental 

algorithms that update existing Galois lattices as the result of adding, removing, or modifying class 

specifications. A prototype tool incorporating this and other algorithms has been developed as part of the 

IGLOO project, which is a large object-oriented software engineering joint research project involving 

academic and industrial partners. The tool can generate either the concept lattice or several variant 

structures incrementally by incorporating new classes one by one. The resulting hierarchies can be 

interactively explored and refined using a graphical browser. In addition, several metrics are computed to 

help evaluating the quality of the hierarchies. Experiments are presented to better assess the applicability 

of the approach. 
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1. Introduction 
 

1.1 Overview 

Building and maintaining the class hierarchy has been recognized as an important and one of the most 

difficult activities of object-oriented design (Booch, 1994). Class hierarchies start taking shape at the 

analysis level, where classes that share application-significant data and application-meaningful external 

behavior are grouped under more general classes. For example the Object Behavior Analysis method 

proposed by Rubin and Goldberg (1992) involves a sub-step where after identifying the objects, their 

attributes and services, the class hierarchy is reorganized in order to represent relevant abstractions based 

on common behaviors and attributes. At the design level, such hierarchies are augmented and possibly 

reorganized in order to take into account the solution objects along with the application domain objects 

(Monarchi & Puhr, 1992). Several guidelines have been proposed for the design of class hierarchies. 

Among these, two characteristics emerge from the literature that are particularly relevant to this work. 

 

1. Minimizing redundancy. There is a large consensus that keeping each thing in one place in the class 

hierarchy is a good software engineering practice (Casais, 1991; Johnson & Foote, 1988; Korson & 

McGregor, 1992; Lieberherr, Bergstein & Silva-Lepe, 1991). Having the same thing defined in many 

places may lead to inconsistencies between the duplicates often because of modifications made in the 

maintenance process. When making modifications, people might not be aware of the duplication. 

Redundancy may also mean that the right abstractions have not been identified based on commonalities 

within the library. Lessons from building large class libraries (Meyer, 1990) show that it is hard to identify 

good abstractions a priori and it is often necessary to reorganize a library to reflect the undetected 

commonalities.  

 

2. Subclasses as specializations. Inheritance is sometimes used only for code reuse purposes, which, as 

observed by Cox (Cox, 1990), produces libraries that are difficult to understand and to reuse. Many 

authors advocate that the inheritance hierarchy be as consistent as possible with specialization (Casais, 

1991; Coleman, Arnold, Bodoff, Dollin, Gilchrist, Hayes, et al., 1994; Cook, 1992; Johnson & Foote, 
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1988; Lalonde, 1989; Liskov, 1988) to achieve better understandability  and reusability. In addition, the 

correctness of polymorphic substitution of an instance of a subclass for an instance of a superclass 

depends on this approach to inheritance. 

 

Initially proposed for knowledge acquisition and discovery in the artificial intelligence field (Godin & 

Missaoui, 1994; Godin, Missaoui & Alaoui, 1991; Wille, 1982; Wille, 1992), concept (or Galois) lattices 

have recently found interesting applications in software engineering (Godin, Mineau, Missaoui, St-

Germain & Faraj, 1995a; Krone & Snelting, 1994). In (Godin & Mili, 1993) concept lattices and derived 

structures were proposed as a framework for dealing with the construction and maintenance of class 

hierarchies. Within that framework, hierarchies were guaranteed to have zero redundancy, by factoring 

out commonalities, and to be consistent with specialization. Another advantage of the theory is that it 

provides a clear and simple definition of the nature of the generated hierarchy that does not depend on 

algorithm specifics or parameter tuning, as opposed to most work in concept formation methods (Fisher 

& Pazzani, 1991; Gennari, Langley & Fisher, 1990) and other algorithms for dealing with class 

hierarchies (Casais, 1991; Dvorak, 1994; Lieberherr et al., 1991). Because the design of class hierarchies 

is typically an iterative and incremental process, we developed efficient incremental algorithms that 

update the hierarchies by adding, removing, or modifying the specifications of classes. 

 

Notice that under the constraints of maximal factorization (everything defined only once) and consistency 

with specialization, a given set of class specifications may yield several class hierarchies-- including the 

Galois concept lattice and its variants. Notwithstanding language differences (e.g. support for multiple 

inheritance), we have been interested in comparing those solutions from the point of view of complexity 

and maintainability. To this end, we designed a set of metrics that build upon an increasing body of work 

on structural metrics for object-oriented software  (Lieberherr et al., 1991, Chidamber & Kemerer, 1994). 

We are interested in measuring redundancy, complexity as reflected by the number of specialization and 

aggregation links, and deviation from specialization. These measures should enable us to compare the 

variants of concept lattices among themselves, and to other manually or automatically-built class 

hierarchies.  
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Using the above framework of concept lattices and related algorithms for class hierarchies, a tool has 

been developed using ObjectWorks Smalltalk, within the context of the IGLOO1 project, a large joint 

research effort involving several Québec universities and Québec-based companies, addressing various 

aspects of object-oriented software engineering. The tool can generate the concept lattice, as well as 

several variant structures, incrementally by incorporating new classes one by one. The hierarchies can be 

explored using a graphical browser. Further, several structural metrics are computed to help evaluate the 

produced hierarchies.  

 

We performed two sets of experiments to test the effectiveness of our approach. The first set of 

experiments was applied to the classes in the Collection sub-hierarchy of the ObjectWorks\Smalltalk 

class library.  The purpose of the experiment was twofold : a) validating, empirically, the complexity of 

the lattice incremental construction algorithms, and b) applying the structural metrics to the Galois lattice 

and its variants, as well as to the original class hierarchy. Extracting class interfaces was, in and of itself, a 

non trivial problem because of the various inheritance cancellation mechanisms used in the Smalltalk 

library. Overall, experiments validated the theoretical complexity of the incremental algorithms, and 

showed the superiority of the Galois lattices, as compared to the original class hierarchy, with regard to 

the structural metrics, Smalltalk’s single inheritance notwithstanding. They also showed that the three 

quality criteria (redundancy, complexity, deviation from specialization) are somewhat contradictory, that 

the different variants of Galois lattices strike different trade-offs between them,  and illustrating once 

more the difficulty of class hierarchy design. 

 

The second set of experiments aimed at validating the approach for a small set of fairly large class 

specifications, as is often the case with domain models. To this end, we applied the algorithm to a 

management information base (MIB), which is a set of class specifications pertaining to 

telecommunication network management functionalities. The experiments showed that the Galois lattice 

                                                
1 IGLOO stands for InGénierie du Logiciel Orienté Objet. 
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helped identify non-trivial generalizations, but at the same time, suffered from the lack of aggregation as a 

concept formation construct, as is the case with the Demeter system (Lieberherr et al., 1991).  

 

Next, we discuss alternative approaches to automatic class organization and re-organization, and 

highlight ways in which our approach is superior, or more easily applicable than the existing body of 

work. In section 2, we present the basic definitions of concept lattices and of several variant structures 

useful for class hierarchies. Section 3 presents our structural metrics, along with motivations and 

examples. Section 4 describes the implementation and some experimental results. We conclude in section 

5. 

 

1.2 Litterature review 
 

The problem of building an initial class hierarchy from a set of class specifications, or re-organizing an 

existing one following class updates, has been receiving increasing attention in the OO literature. Work in 

the context of the Demeter System has addressed the automatic discovery of class hierarchies from 

example objects (Lieberherr et al., 1991). They use a class dictionary graph to represent the design. 

Their algorithm uses a metric which underlies an optimization process. They propose a two-step learning 

algorithm where the first step does basic learning by generating a potentially non-optimal class dictionary 

graph. The edges of the graph represent the inheritance (alternation edges) and part-of (construction 

edges) relationships between classes. The second step optimizes the graph by trying to minimize a 

weighted function of the edges where the weight of the construction edges is at least twice the weight of 

the alternation edges. This function can be considered as a complexity metric for the class hierarchy. The 

metrics we have implemented in our tool are in part based on this work although we do not use them to 

guide the hierarchy construction process. Lieberherr et al. show that the exact optimization is NP hard 

and propose an approximate algorithm that brings down the complexity to a polynomial one. They also 

present an incremental algorithm that produces the optimum when it is a tree (Bergstein & Lieberherr, 

1991). The same goals can be achieved within our framework with an important advantage: the resulting 

structure is clearly defined independently of any algorithm for producing it. A designer may be more 

inclined to use a tool where he could precisely understand why a given abstraction has emerged. The 
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incremental algorithms we use produce exactly the same result as the batch algorithms when applied to 

the same set of classes. Also, their algorithm does not address the possibility of a taxonomic relationship 

between properties. 

 

Cook (1992) was more interested in critiquing and re-organizing existing class hierarchies to bring class 

(implementation) hierarchies as close as possible—language permitting—to type (interface) hierarchies. 

In one experiment, he automatically extracted interface specifications of the Smalltalk-80 Collection 

class library to build the corresponding interface hierarchy. He examined the produced hierarchy to detect 

problems with the actual library and proposed some improvements which are feasible within the context 

of Smalltalk’s single inheritance. He also sketched a simple algorithm to generate the hierarchy. His 

algorithm is not incremental and the hierarchy has to be regenerated from scratch if any modification is 

done to the specifications. We show in section 2 how his structure is related to our formal framework. 

We also extend this work by showing other variant structures that can be relevant to the design of class 

hierarchies. In particular, we consider taking into account taxonomic relationships between properties. 

For example, our framework can handle overloading through type conformant redefinitions of operations. 

 

Casais (Casais, 1991) proposed an approach that has essentially the same goals as ours, and that includes 

an incremental algorithm. However, his incremental algorithm relies on the user to specify the immediate 

superclasses of the new class, and it starts from that point and locally reorganizes the hierarchy. 

Consequently, the hierarchy is not guaranteed to be globally optimal and non redundant. Although he 

allows an interface to have several implementations and takes this into account in the process, he does not 

address the possibility of using specialization relationships between different implementations. 

 

The ARES algorithm proposed in (Dicky, Dony, Huchard & Libourel, 1994) is also incremental and can 

generate the Galois subhierarchy from the class specifications. In (Dicky, Dony, Huchard & Libourel, 

1996), Dicky et al. extend their work to handle overloading of properties. One major disadvantage of 

their algorithm is that it goes through every node of the hierarchy in a particular order. Our algorithm 
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only looks at a limited subset of the nodes. An advantage of their algorithm is that it can be used on 

hierarchies that are not necessarily maximally factorized. 

 

Based on an empirical study, Dvorak (Dvorak, 1994) showed how class hierarchies tend to exhibit 

conceptual entropy which is manifested by increasing conceptual inconsistency as we travel down the 

hierarchy. As a solution, he proposed a method and an algorithm for building class hierarchies 

emphasizing conceptual simplicity and consistency. The algorithm relies on manually-generated formal 

specifications of the conceptual attributes for each class. The approach is also different from the 

preceding ones because the algorithm places the input classes in a tree structure without trying to 

discover new emerging abstractions based on observed commonalities. The framework and algorithms we 

propose could also be applied to the formal specifications when available. 

 

Notice that the focus of these algorithms is how to put initially provided classes in a hierarchy and they 

do not address the restructuring of the basic objects and classes. There might be better alternative designs 

of these initial classes based on splitting or combining classes for example. Work on such behavior 

preserving transformations includes (Bergstein, 1991; Opdyke & Johnson, 1989). From the perspective of 

database schema evolution, Li and McLeod (Li & McLeod, 1994) have studied related problems in the 

handling of changes to the semantics of existing objects and classes. 
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2. Concept lattice and variants 
 

In this section, we start with the basic definition of concept lattices. Then several variant structures are 

defined.  

 

2.1 Concept lattice 
 

We present the basic definition of a concept (Galois) lattice for a binary relation and illustrate it using a 

simple interface hierarchy example. Later, we extend the framework to handle more complex class 

specifications. More details about the underlying theory of concept lattices can be found in (Barbut & 

Monjardet, 1970; Davey & Priestley, 1992; Wille, 1992). 

 

A (formal) context is a triple (G, M, I) where G and M are two finite sets and I is a binary relation 

between G and M, i.e. I ⊆ G × M. The notation gIm is used instead of writing (g,m) ∈ I. Given A ⊆ G 

and B ⊆ M, define: 

 A’  = { m ∈ M |  (∀g  ∈ A) gIm }  and 

 B’  = { g ∈ G |  (∀m  ∈ B) gIm } . 

A concept of the context (G, M, I) is defined as a pair (A, B) where: 

 A ⊆ G , B ⊆ M,  A’=B and B’=A.  

A partial order on the concepts can be defined as follows: 

 (A1, B1) � (A2, B2) if A1 ⊆ A2 (which is equivalent to B2 ⊆ B1 ). 

 

The set of all concepts for the context (G, M, I) with partial order � is a complete lattice called the 

concept (or Galois) lattice  of the context (Davey & Priestley, 1992) and is denoted here by CL(G, M, I).  

 

The set G is usually described as a set of objects and M as a set of attributes. For our purposes, the set G  

represents a set of classes and the set M represents a set of class properties including attributes (instance 

variables) and methods. Figure 2.1.1 shows an example context represented as a Boolean matrix. In the 

example, only message selector names appear as properties although we will consider other possibilities 
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later. The example in Figure 2.1.1 was extracted from (Cook, 1992) and represents a subset of the 

interfaces for a subset of the Collection classes in the ObjectWorks Smalltalk class library. This example 

is used for illustration purposes. For the classes appearing in the example, a sufficient subset of methods 

was chosen in order to relate the resulting structure to that given in (Cook, 1992). A message selector is 

related to a class by the binary relation if it is part of the interface  of the class, i.e. the set of legal 

messages to which that the class can respond without returning an error. More details on the interface 

extraction are given in section 3. The exact syntax of a message selector is not respected in the example. 

The names given here are the concatenation of the argument keywords for each selector. 

 

 Set Bag Dictionary Linked 

List 

Array 

isEmpty 1 1 1 1 1 
size 1 1 1 1 1 
includes 1 1 1 1 1 
add 1 1 1 1 0 
remove 1 1 0 1 0 
minus 1 0 1 0 0 
addWithOccurrences 0 1 0 0 0 
at 0 0 1 1 1 
atput 0 0 1 0 1 
atAllPut 0 0 0 0 1 
first 0 0 0 1 1 
last 0 0 0 1 1 
addFirst 0 0 0 1 0 
addLast 0 0 0 1 0 
keys 0 0 1 0 0 
values 0 0 1 0 0 

Figure 2.1.1. Matrix representation of a context. 
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({ A,D,LL,B,S} , 
{ isEmpty,size,includes} )

({A ,D,LL}, 
{ isEmpty,size,includes,at} )

({ D,LL,B,S} , 
{ isEmpty,size,includes,add} )

({ A,D} , 
{ isEmpty,size, 

includes,at, 
atput} )

({D,LL} , 
{ isEmpty,size, 

includes,at, 
add} )

({A,LL} , 
{ isEmpty,size, 

includes,at, 
first,last} )

({ A} , 
{ isEmpty,size, 

includes,at, 
atput,atAllPut,

first,last} )

({ D} , 
{ isEmpty,size, 

includes,at, 
atput,add, 

minus, 
keys,values} )

({ LL} , 
{ isEmpty,size, 

includes,at, 
add,first,last, 

remove, 
addFirst, 
addLast} )

({D,S}, 
{ isEmpty,size, 
includes,add, 

minus} )

({ LL,B,S} , 
{ isEmpty,size, 
includes,add, 

remove} )

({ S} , 
{ isEmpty,size, 
includes,add, 

minus, 
remove} )

({B}, 
{ isEmpty,size, 
includes,add, 

remove, 
addWithOccurrences} )

(Ø, 
{ all method 
selectors} )  

Figure 2.1.2. Concept lattice for the context in Figure 2.1.1. 

 

Figure 2.1.2 shows the corresponding concept lattice. Only the uppercase letters for the class names 

appear in the Figure. The partial order is used to generate the graph in the following manner: there is an 

edge (C1, C2) if C1 < C2 and there is no other element C3 in the lattice such that C1 < C3 < C2. C1 is called 

parent of C2 and C2 child of C1. The graph is usually called a Hasse diagram. When drawing a Hasse 

diagram, the edge direction is implicit (here upwards). 

 

The concept lattice reveals the commonalities between the classes of the context. The first part of the 

concept is the set of classes and the second part shows their common properties. This factorization of 

common properties can therefore be used in the class hierarchy design process. The Hasse diagram shows 

the generalization/specialization relationship between the concepts corresponding to the subset 

relationship between the property and objet sets. Therefore the graph can be used to produce hierarchies 

which are consistent with specialization. A fundamental property of CL is that it is a complete lattice 
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since for any subset of CL there exists a unique greatest lower bound and a unique least upper bound 

(Davey & Priestley, 1992). 

 

The concept lattice generated from the interfaces in such a manner is closely related to the interface 

hierarchy defined in (Cook, 1992). The are some differences, which are explained below. In the case of 

class protocols, each concept represents a set of classes with their common interface and the Hasse 

diagram corresponds to the conformance relationship as defined by the inclusion of the sets of message 

selectors of the interfaces. The explicit representation of the sharing among interfaces is used as a tool for 

analyzing a library in (Cook, 1992). The interface hierarchy may also be useful to a reuser for browsing 

from a perspective which is different from the class (implementation) hierarchy and that is closer to the 

clients’  view of the library (type hierarchy). This is similar in spirit to the work of (Oosthuizen, Bekker & 

Avenant, 1992). In this paper, we go futher by showing how to take into account different, but type 

conformant (i.e. partially-ordered) versions of the same method 

 

It is important to note that taking all possible subsets produces an exponential number of concepts. 

However, when there is a fixed upper bound on ||{ g} ’ ||, 

 ||{ g} ’ || � K, ∀g ∈ G, 

which is usually the case in practical applications, the worst case complexity of the structure is linearly 

bounded with respect to ||G|| = n  (Godin, Saunders & Gecsei, 1986): 

 ||CL|| � 2K n. 

The upper bound on ||CL|| is exponential in K; however, experience with real applications and theoretical 

results with randomly assigned elements show that in practice, ||CL||/n is fairly stable and much smaller 

than this upper bound (Carpineto & Romano, 1996; Godin, Missaoui & April, 1993). 

 

Another important factor for the practical use of the lattice is the existence of incremental algorithms for 

updating the lattice structures (Carpineto & Romano, 1996; Godin, Missaoui & Alaoui, 1995d). 

Empirical data from several applications showed that new elements can be added in O(n) time (Godin et 

al., 1995d). Under the hypothesis of a fixed upper bound on ||{ g} ’ ||, this is also confirmed by a 
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complexity analysis. This upper bound hypothesis is a reasonable one for class features, although the 

upper bound might be large for the case of message selectors, as opposed to instance variables. 

 

2.2 Inheritance concept lattice 

 

The concept lattice itself is not adequate for class hierarchies because of the redundancy in the 

representation. For a pair C = (A, B), A will be present in every ancestor of C and symmetrically, B will 

appear in every descendant. For the class hierarchy design problem, the duplication should therefore be 

eliminated and be computed when needed by the inheritance mechanism. For a concept C = (A, B), let AN 

be the non-redundant elements in A, and BN the non redundant elements in B. A class g will appear in AN 

if the corresponding concept C is the greatest lower bound of all concepts containing g. Symetrically, a 

property m will appear in BN if the corresponding concept C is the least upper bound of all concepts 

containing m. The lattice property guarantees the existence of greatest lower bound and the least upper 

bound. 

 

An inheritance concept lattice  (ICL) corresponds to the set of pairs (AN, BN). Figure 2.2.1 is the ICL 

for the example relation of Figure 2.1.1. From a class design perspective, the idea is to consider each 

concept of the generated ICL as a class and the edges of the Hasse diagram as the class-subclass 

relations. The ICL also shows where each property should be declared. One important property of the 

ICL is that each property appears exactly in one place. We obtain in such a manner a maximal 

factorization of the common properties of the classes. In the example, only message selectors are 

considered and therefore the hierarchy does not show where the different implementations of the same 

selector should be defined. This will be addressed in section 2.4. 
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(Ø, 
{ isEmpty,size,includes})

(Ø, 
{ at} )

(Ø, 
{ add} )

(Ø, 
{ atput} )

(Ø, 
Ø)

(Ø, 
{ first,last} )

({ Array} , 
{ atAllPut})

({ Dictionary} , 
{ keys,values})

({ LinkedList} , 
{ addFirst, 
addLast} )

(Ø, 
{ minus} )

(Ø, 
{ remove})

({ Set} , 
Ø)

({Bag} , 
{ addWithOccurrences} )

(Ø,Ø)
 

Figure 2.2.1. Inheritance concept lattice. 

 

The representation used in (Cook, 1992) is based on the inheritance concept lattice. It shows explicitly 

the message selectors that are not inherited from the parent nodes, and thus that distinguish the set of 

classes represented by that node. Those message selectors can also be used to determine the semantics of 

the concept. For example, the concept (Ø,{ at} ) can be interpreted as the set of Indexed Collections 

responding to the at message which returns the element at a given index in the collection. In this manner 

each concept having an empty AN set can be considered as a new abstract class and names can be given 

to identify these. The names given in (Cook, 1992) for the example appear in Figure 2.2.2. Two abstract 

classes, Collection and SequenceableCollection, appear in the ObjectWorks Smalltalk library itself. 

There are however many other interesting abstractions which are revealed by the lattice. There still is one 

subtle difference between this structure and the hierarchy used in (Cook, 1992) because of the Indexed 

Extensible Collection class that does not appear in his structure. The difference  will be clarified below. 
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(Ø, 
{ isEmpty,size,includes} )

(Ø, 
{ at} )

(Ø, 
{ add} )

(Ø, 
{ atput} )

(Ø, 
Ø)

(Ø, 
{ first,last} )

({ Array} , 
{ atAllPut} )

({ Dictionary} , 
{ keys,values} )

({ LinkedList} , 
{addFirst, 
addLast} )

(Ø, 
{ minus} )

(Ø, 
{remove} )

({ Set} , 
Ø)

({ Bag}, 
{ addWithOccurrences} )

Collection

Indexed Collection Extensible Collection

Updatable 
Collection

Indexed Extensible 
Collection

Subtractable 
Collection

Removable 
Collection

Sequenceable 
Collection

(Ø,Ø)
 

Figure 2.2.2. Inheritance concept lattice plus abstract protocol names. 

 

The algorithm used for generating the concept lattice is described in (Godin et al., 1995d) and generates 

for each pair the sets A, B, AN and BN. In our tool, users can choose the representation that is the most 

useful for their purposes. When generating the class hierarchies, the ICL is used. 
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2.3 Pruned concept hierarchy 
 

For some applications, the concept lattice contains too many concepts and a well chosen subset might be 

more useful (Godin, Mineau, Missaoui & Mili, 1995c). One interesting subset is the pruned concept 

(galois) hierarchy  (also called Galois subhierarchy in (Dicky et al., 1994)) which has been introduced in 

the more general context of conceptual clustering of conceptual graphs, under the name knowledge space 

(Mineau, Gecsei & Godin, 1990). We describe the pruned concept hierarchy for the case of binary 

relations below.  

 

The pruned concept hierarchy (PCH)  may be generated from the concept lattice by eliminating the pairs 

which have empty  AN and BN sets. In the example of Figure 2.2.2, two pairs would be eliminated, and  

the resulting pruned inheritance concept hierarchy (PICH)  is shown in Figure 2.3.1. Although the 

maximal factorization is preserved in the pruned hierarchy, the lattice property is not always preserved. 

The interface hierarchy used in (Cook, 1992) corresponds to the PICH. The Indexed Extensible 

Collection node (class) was removed because all of its selectors came from parent classes. Whether this 

is a sufficient condition not to consider it is debatable. Under some circumstances, there are some good 

reasons to keep it in order to minimize multiple inheritance, for example. As an extreme case, consider a 

library where 4 classes all inherit from the same 4 classes in the PICH (Figure 2.3.2). This would be 

represented by 4 X 4 = 16 inheritance links. It would be preferable to add an intermediary class as in the 

concept lattice which would represent the common parts inherited from the 4 classes. The number of 

links would therefore be reduced to 4+4. A comparison using metrics for evaluating class hierarchies will 

be presented in the next section. Maintaining a lattice structure also has some advantages from an 

implementation point of view (Caseau, 1993). 
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(Ø, 
{ isEmpty,size,includes})

(Ø, 
{ at} )

(Ø, 
{ add} )

(Ø, 
{ atput} )

(Ø, 
{ first,last} )

({ Array} , 
{ atAllPut})

({ Dictionary} , 
{ keys,values})

({ LinkedList} , 
{ addFirst, 
addLast} )

(Ø, 
{ minus} )

(Ø, 
{ remove})

({ Set}, 
Ø)

({Bag} , 
{ addWithOccurrences} )

Collection

Indexed Collection Extensible Collection

Updatable 
Collection

Subtractable 
Collection

Removable 
Collection

Sequenceable 
Collection

 

Figure 2.3.1. Pruned inheritance concept hierarchy (PICH) for the relation in Figure 2.1.1. 

 



Design of class hierarchies based on concept (Galois) lattices 
 

17

 

Figure 2.3.2. Example of 4 classes inheriting from 4 others in PICH. 

 

 

Figure 2.3.3. Same example with CL. 

 

Rather than generating the PICH from the concept lattice by pruning empty concepts, incremental 

algorithms have been designed that generate the PICH  directly. The ARES algorithm described in (Dicky 

et al., 1994) can generate the PICH. In our case, we have adapted the incremental algorithm for ICLs  

(Godin, Mineau & Missaoui, 1995b). Experiments described in Section 3 show that generating the PICH 

can be much more efficient than generating the CL. 
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2.4 Using taxonomic relations 

 

The description of a class used in the previous sections consisted simply of a set of unrelated properties. 

The fact that these items corresponded to method selectors has no bearing on the technique. We could 

use attributes instead, or both, or any other specification in the form of a set of properties as in (Dvorak, 

1994). However, the structures do not consider relationships between the properties. For example, it is 

important to be able to handle overloading where the same message selectors may have different 

implementations. We cannot consider such methods as completely different, for otherwise we miss a 

useful abstraction in the fact that they implement the same abstract behavior. We would like to have a 

hierarchy where both the commonalities of abstract interfaces and implementations are identified. It is 

also important to take into account the possibility that a method might be a specialization of another 

method and use this information in the classification process. 

 

Using the framework described earlier, this can be accomplished by defining taxonomic relationships 

between class properties, which are then taken into account in the process of generating and comparing 

the concepts .As a first step, we only consider relations between the abstract selectors and the different 

implementations. This is the approach taken for our experiments. The result will show where each 

interface and implementation should be defined in the hierarchy in order to avoid duplication. In 

Smalltalk, the language does not provide a mechanism for defining the interface hierarchy. However, a 

commonly used practice in the Smalltalk library indicates that a method is abstract/deferred by having it 

generate an exception when executed, which in effect says that the method should be redefined in the 

subclasses and not called as is. 

 

To apply the previous framework, we consider each implementation of the same selector as a 

specialization of the abstract behavior represented by the selector name. Figure 2.4.1 represents the 

relationship between classes and the implementations for our collection classes example. The different 

implementations for the message selector x are denoted by x1, x2, etc. For example, Set, Bag, 

Dictionary and Array all use the same implementation isEmpty1 for the isEmpty method selector by 
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inheriting it from the Collection class, while LinkedList uses another implementation isEmpty2. The 

relationship of Figures 2.1.1 and 2.4.1 with the actual library can be understood by examining Figure 

2.4.2. Figure 2.4.2 shows where each method is defined in the actual ObjectWorks Smalltalk hierarchy. 

The right-hand column shows the methods defined in the class and the left-hand column represents the 

effect of the definitions on the actual interface of the class. 

 

Note that for the case of Smalltalk, the interface of a class cannot be equated with the set of messages 

that the class understands. For instance, classes sometimes understand (inherit) methods that they should 

not call. There are two important cases where one does not want a class to call an inherited method. The 

first case is when a general-purpose inherited method is unsafe or otherwise inappropriate for the class at 

hand. Because there is no built-in mechanism for « canceling » an inherited method, a common practice 

used in the class library is to redefine such a « forbidden » method locally to raise an exception when 

invoked. This is denoted in Figure 2.4.2 by following the name of the method with a "/" and a code 

identifying the type of exception. For example, the atPut method is canceled in class LinkedList by 

raising an exception because we cannot access linked lists with an index. The second case where we 

would not want objects of a class to call an inherited method is when the intent of the inherited method 

was to define the selector as part of the abstract interface and to leave the actual implementation as a 

responsibility of the subclasses. In this case, it is the inherited method that raises an exception-- called 

SubResp, for subclass responsibility. In Figure 2.4.2, new selectors in the interface of a class with 

respect to the parent class appear in bold on the left-hand column and cancelled selectors appear in gray 

and italic. 

 

To represent the relationship between the message selector and the implementations, a taxonomic 

relation, noted < is defined: 

 isEmpty1 < isEmpty, 

 isEmpty2 < isEmpty, etc. 

 



Design of class hierarchies based on concept (Galois) lattices 
 

20

The taxonomic relation should not be confused with the partial order between concepts in the hierarchy. 

The definitions in the previous sections are modified simply by extending the relation I in order to take 

into account the taxonomic relation. �We define a new relation I+  between elements of G and M that 

includes the method selectors and the representation of the implementations: 

 gI+m if ∃m’  such that m’  � m and gIm’ . 

Set M now contains both the message selectors and methods. In our example, Set I+ isEmpty1 and in 

addition, Set I+ isEmpty. Replacing I with I+, we obtain the enriched context (G, M, I+) where the 

taxonomic relationships are taken into account. 

 

In our example, the pair ({ Dictionary, LinkedList} , { isEmpty, size, includes, includes1, add, at} ) is a 

concept for CL(G, M, I+). Although the implementations are different for isEmpty, size, add and at, 

they match on the selector name using the taxonomic relation. The resulting lattice appears in Figure 

2.4.3. Compared to the previous lattice where only the interface appeared, there are new concepts that 

are highlighted in bold squares. For example, the new concept ({ Array, Dictionary, Bag, Set} , { isEmpty, 

isEmpty1, size, includes} ) emerges. It represents the set of classes that respond to the common interface 

{ isEmpty, size, includes}  and in addition share the same implementation isEmpty1. To distinguish this 

type of hierarchy from interface hierarchies, we call it an Int-Imp hierarchy. As before, the notions of 

inheritance and pruning can be applied. The ICL appears in Figure 2.4.4. Again, this structure is the most 

relevant one for class hierarchies because it shows where the interface and implementations should be 

defined for each selector. The result is a hierarchy where there is no redundancy for the implementation 

and interface definitions and which is consistent with specialization. Furthermore, the fact that the 

methods are considered as completely different implies that methods are never redefined but only deferred 

methods for which the interface have been declared can be defined. The PICH is shown in Figure 2.4.5. 

Compared to the PICH based only on the interface, there is one additional class (in a bold square) for the 

set of classes sharing the isEmpty1 implementation.  

 

It would evidently be possible to generate the hierarchies based only on the implementation specifications 

without using the taxonomic relation with the interfaces. We call this an Imp hierarchy. This would show 



Design of class hierarchies based on concept (Galois) lattices 
 

21

how to build a hierarchy where there is no code duplication. As opposed to the Int-Imp hierarchy, there 

would be some interface redundancy, however, because the common interfaces are not detected unless 

they all share the same implementation. Nevertheless, there might be circumstances where this is an 

interesting compromise. 

 

So far, we have presented the case where taxonomic (conformance) relations existed only between 

signatures and  implementations. Our experiments are based on this type of specification. However, this is 

not an inherent limitation of the approach. The preceding taxonomic relation is limited by the fact that the 

implementations are considered as completely different from each other. There might be implementations 

that are specializations of other implementations and should not be considered as completely different. 

Redefining a method by specializing it should be permitted and would produce hierarchies which are also 

consistent with specialization. This can be taken into account by extending the taxonomy to incorporate 

these specialization relationships between method implementations. This results into an even better 

hierarchy. We have not used this ideal approach in our experiments because we could not infer these 

relationships from an automatic code analysis. However, if such information were available it could be 

incorporated in the taxonomy. The taxonomic relationships between methods could be inferred from 

formal specifications or supplied by the designer. Dicky et al. Showed how some special cases can be 

computed  (Dicky et al., 1996). The result will be a hierarchy where method redefinition is permitted 

when consistent with specialization and that is maximally factorized as defined in (Dicky et al., 1996) ; an 

inheritance hierarchy is maximally factorized, if and only if, whenever Class1 has property x1 and Class2 

has property x2, and x3 is the least upper bound of x1 and x2, then the hierarchy has a common superclass 

of Class1 and Class2 containing the declaration of x3. 

 

Consider the example in Figure 2.4.6. Class1 uses methods { a1, b1} , Class2 uses { a1, b2} , and Class3 uses 

{ a2, b1} . The taxonomy for these methods is given in Figure 2.4.7. As shown, in addition to the 

relationship between the methods and their interfaces, Method a2 is a specialization of a1 and b2 is a 

specialization of b1. If we only take the relationship between methods and interfaces, we obtain the ICL in 

Figure 2.4.8. When taking the specialization relationships between methods into account, the ICL 
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produces a much more compact and tight hierarchy as illustrated in Figure 2.4.9. Failing to recognize the 

specialization relationships, many additionnal concepts have to be generated resulting in an unnecessarily 

complicated design. For example, in Figure 2.4.8, the ICL fails to recognize that Class2 is a specialization 

of Class1 because it considers b1 and b2 to be unrelated except for their common interface. It therefore 

creates a new concept to factor out specifically the a1 method that is common to Class1 and Class2. The 

result is not maximally factorized because there is no common superclass of Class1 and Class2 that 

declares b1, the least upper bound of b1 and b2. When using the taxonomy as in Figure 2.4.9, the ICL is 

maximally factorized because the common superclass of Class1 and Class2 , which isClass1, declares b1, 

the least upper bound of b1 and b2. The same phemenon can be observed for Class1 and Class3 with 

respect to a1 and a2. When using PICH, the same advantages are produced. In fact, except for the bottom 

concept, the PICH is equal to the ICL for the previous example. 

 

The approach presented so far uses only the methods for classification but it can be applied to any type of 

specification of classes in the form of sets of properties which may be related by a partial order. For 

example, Dvorak (Dvorak, 1994) proposed a classification algorithm based on formal specifications of 

conceptual class properties. Our approach is directly applicable on that type of representation. 

 

Finally, the approach can been generalized to handle richer descriptions in the form of conceptual graphs 

(Mineau & Godin, 1995). It can therefore be applied to handle richer descriptions of the classes (Godin & 

Mili, 1993). The current interest in formal specifications for classes (Cheon & Leavens, 1994; Parisi-

Presicce & Pierantonio, 1994) suggests that these might be available on a larger scale in the future and 

could be exploited by classification algorithms. 
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class → 
 
method ↓ 

Set Bag Dictionary Linked 
List 

Array 

isEmpty1 1 1 1 0 1 
isEmpty2 0 0 0 1 0 
size1 0 0 0 1 0 
size2 1 0 1 0 0 
size3 0 1 0 0 0 
size4 0 0 0 0 1 
includes1 0 0 1 1 1 
includes2 1 0 0 0 0 
includes3 0 1 0 0 0 
add1 1 0 0 0 0 
add2 0 1 0 0 0 
add3 0 0 1 0 0 
add4 0 0 0 1 0 
remove1 1 0 0 0 0 
remove2 0 1 0 0 0 
remove3 0 0 0 1 0 
minus1 1 0 1 0 0 
addWithOccurren1 0 1 0 0 0 
at1 0 0 0 0 1 
at2 0 0 1 0 0 
at3 0 0 0 1 0 
atput1 0 0 1 0 0 
atput2 0 0 0 0 1 
atAllPut1 0 0 0 0 1 
first1 0 0 0 0 1 
first2 0 0 0 1 0 
last1 0 0 0 0 1 
last2 0 0 0 1 0 
addFirst1 0 0 0 1 0 
addLast1 0 0 0 1 0 
keys1 0 0 1 0 0 
values1 0 0 1 0 0 

 

Figure 2.4.1. Relation I between classes and implementations. 
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isEmpty 
size 
includes 
add 
remove 
at 
atput 
atAllPut 
first 
last 

Collection
isEmpty1 
size1 
includes1 
add/subResp 
remove/subResp 

Object

at1 
atPut2

SequenceableCollection
size/subResp 
remove/cancel 
atAllPut1 
first1 
last1 

Set
size2 
includes2 
add1 
remove1 
minus1 
at/error 
atPut/error 

Bag
size3 
includes3 
add3 
remove2 
addWithOcc1 
at/error 
atPut/error 

ArrayedCollection
size4 
add/cancel 
 

LinkedList
isEmpty2 
size1 
add4 
remove3 
at3 
atPut/error 
first2 
last2 
addFirst1 
addLast1 

Dictionary
includes1 
add3 
remove/error 
at2 
atPut1 
keys1 
values1 

at 
atPut

Interface Imple.

isEmpty 
size 
includes 
add 
remove 
at 
atput 

isEmpty 
size 
includes 
add 
remove 
minus 
at 
atPut

isEmpty 
size 
includes 
add 
remove 
addWithOcc 
at 
atPut 

isEmpty 
size 
includes 
add 
remove 
at 
atput 
atAllPut 
first 
last 

isEmpty 
size 
includes 
add 
remove 
at 
atPut 
atAllPut 
first 
last 
addFirst 
addLast

isEmpty 
size 
includes 
add 
remove 
minus 
at 
atPut 
keys 
values

 

 

Figure 2.4.2. Subset of the ObjectWorks Smalltalk class hierarchy. 
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({ A,D,LL,B,S} , 

{ isEmpty,size,includes} )

({A,D,LL}, 
{ isEmpty,size,includes, includes1,at} )

({ D,LL,B,S} , 
{ isEmpty,size,includes,add})

({ A,D}, 
{ isEmpty, isEmpty1,size, 
includes, includes1, at, 

atPut} ) 
 

({ D,LL} , 
{ isEmpty,size, includes, 

includes1, at, add} ) 
 

({ A,LL} , 
{ isEmpty, size, 

includes, includes1, 
at, first, last} ) 

 

({ A} , 
{ isEmpty, isEmpty1,  

size, size4,  
includes,  includes1, 
 at, at1, atput, atput2,  
atAllPut, atAllPut1,  

f irst, first1, last, last1} ) 
 

({ D}, 
{ isEmpty, isEmpty1, 

 size, size2,  
includes, includes1, 
 at, at2, atput, atput1,  

add, add3,  
minus, minus1, 

keys, keys1,  
values, values1} ) 

 

 

({ LL} , 
{ isEmpty, isEmpty2,  

size, size1,  
includes, includes1,  
at, at3,  add, add4,  

first, f irst2, last, last2,   
remove, remove3,  
addFirst, addFirst1,  
addLast, addLast1} )

({ D,S} , 
{ isEmpty, isEmpty1, 
 size, size2, includes, 
 add, minus, minus1}) 

({ LL,B,S} , 
{ isEmpty,size, 
includes,add, 

remove} )

({ S} , 
{ isEmpty, isEmpty1,  

size, size2,  
includes, includes2,  

add, add1,  
minus, minus1,  

remove, remove1} ) 

 

({B} , 
{ isEmpty, isEmpty1,   

size, size3,  
includes, includes3, add, 
add2, remove, remove2, 
addWithOccurrences, 

addWithOccurrences1} ) 
 
 

(Ø, 
{all methods })

({ A,D,B,S} , 
{ isEmpty, isEmpty1,size,includes} )

({D,B,S}, 
{ isEmpty, 

isEmpty1,size, 
includes,add} )

({B,S} , 
{ isEmpty, isEmpty1, 

size, includes, 
add, remove} )

 

Figure 2.4.3. Concept lattice CL for interface and implementation (Int-Imp CL). 
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(Ø, 
{ isEmpty,size,includes} )

(Ø, 
{ includes1,at} )

(Ø, 
{ add} )

(Ø, 
{ atPut} ) 

 

(Ø,Ø) (Ø, 
{ f irst, last} ) 

 

({ A} , 
{  size4,  includes1, 
  at1, atput, atput2,  

atAllPut, atAllPut1,  
f irst1, last1} ) 

 

({ D} , 
{ at2, atput1, add3,  

keys, keys1,  
values, values1} ) 

  

({ LL} , 
{ isEmpty2,  size1,  
 at3,  add4, first2,  
last2, remove3,  

addFirst, addFirst1,  
addLast, addLast1} )

(Ø,
{ size2, 

 minus, minus1} ) 

(Ø, 
{ remove} )

({ S} , 
{ includes2, add1,   

remove1})  

({ B} , 
{ size3, includes3, 
add2, remove2, 

addWithOccurrences, 
addWithOccurrences1} ) 

 
 

(Ø,Ø)

(Ø, 
{  isEmpty1} )

(Ø,Ø)

(Ø,Ø)

 

Figure 2.4.4. ICL for interface and implementation (Int-Imp ICL). 
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(Ø, 
{ isEmpty,size,includes} )

(Ø, 
{ includes1,at} )

(Ø, 
{ add} )

(Ø, 
{ atPut} ) 

 

(Ø, 
{ f irst, last} ) 

 

({ A} , 
{  size4,  includes1, 
  at1, atput, atput2,  

atAllPut, atAllPut1,  
f irst1, last1} ) 

 

({ D} , 
{ at2, atput1, add3,  

keys, keys1,  
values, values1} ) 

  

({ LL} , 
{ isEmpty2,  size1,  
 at3,  add4, first2,  
last2, remove3,  

addFirst, addFirst1,  
addLast, addLast1} )

(Ø,
{ size2, 

 minus, minus1}) 

(Ø, 
{ remove} )

({ S} , 
{ includes2, add1,   

remove1})  

({ B} , 
{ size3, includes3, 
add2, remove2, 

addWithOccurrences, 
addWithOccurrences1} ) 

 
 

(Ø, 
{  isEmpty1} )

 

Figure 2.4.5. Pruned inheritance concept hierarchy (PICH) for interface and implementation (Int-Imp 

PICH). 

 
 

class → 
 
method ↓ 

Class1 Class2 Class3 

a1 1 1 0 
a2 0 0 1 
b1 1 0 1 
b2 0 1 0 

Figure 2.4.6. Relation between classes and implementations. 

 
a

a1

a2

b

b1

b2  
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Figure 2.4.7. Specialization relationship between methods. 

 

 

(Ø, { a, b} )

(Ø, {a1}) (Ø, { b1})

(Class1, Ø) (Class2, { b2} ) (Class3, { b2})

(Ø, Ø)
 

 

Figure 2.4.8. ICL without using specialization relationship between methods. 

 

(Class1, { a, a1 , b, b1 } )

(Class2, { b2}) (Class3, { a2})

(Ø, Ø)
 

Figure 2.4.9. ICL using specialization relationship between methods. 
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3. Structural metrics 
 

The metrics we are seeking should help to compare different class hierarchies as a whole. They do not 

evaluate the quality of the initial classes themselves used as a starting point for building the hierarchies. 

There might be alternative designs of these initial classes which may involve splitting or combining 

classes ; this is another important problem which is the focus of some ongoing work..  

 

Chidamber and Kemerer (1994) have proposed a set of six metrics which apply to classes as individuals. 

Their metrics are useful to compare different designs of the individual classes. Nevertheless, some of 

these local metrics are related to the global metrics used here for the hierarchy as a whole. To our 

knowledge there are no empirically validated metrics for the design of class hierarchies. However, based 

on the current work (Casais, 1991; Johnson & Foote, 1988; Korson & McGregor, 1992; Lieberherr et 

al., 1991), there are at least three aspects which seem important in determining the quality of class 

hierarchies and should therefore be measured: redundancy, complexity and deviation from specialization. 

 

The work of the Northeastern University group on the Demeter System has addressed the problem of a 

quality measure for class hierarchies in their approach to automatic discovery of class hierarchies from 

example objects (Lieberherr et al., 1991). Their algorithm uses a metric which underlies the optimization 

process. They use a two step learning algorithm where the first step does basic learning by generating a 

potentially non-optimal class dictionary graph. The edges of the graph represent the inheritance 

(alternation edges) and part-of (construction edges) relationships between classes. The second step 

optimizes the graph by trying to minimize a weighted function of the edges where the weight of the 

construction edges is four times the weight of the alternation edges (they suggest that any value larger 

than two would be acceptable). This function can be considered as a metric for the class hierarchy. In 

their work, a part is considered as a high-level concept which might be implemented as a method or as an 

instance variable. In our work, we use the methods as parts. The total number of parts cumulated by 

adding the number of parts for each class will be called Parts in the following. The individual metric 

computed for each class is similar to the Weighted Methods Per Class metric proposed in (Chidamber & 
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Kemerer, 1994). However the perspective is different in this context because it is not used to evaluate the 

complexity of individual classes. The total number of inheritance edges in the inheritance graph will be 

denoted Inher. This corresponds to the Number of Children metric of (Chidamber & Kemerer, 1994) 

which is summed up for all classes. The metric of (Lieberherr et al., 1991)  is called M1 in the following 

and is defined as: 

 M1= 4*Parts + Inher. 

 

Using this function favors factoring out common parts which reduces the construction edges at the 

expense of adding alternation edges. This is consistent with the idea of minimizing redundancy. It is a 

good principle from a software engineering point of view since having each thing in one place facilitates 

comprehension and maintenance (resiliency to change (Lieberherr et al., 1991)). Overall, the function also 

tries to minimize the complexity of the hierarchy measured by counting the edges.  

 

The above metric has some weaknesses. For example, the two designs in Figures 3.1-a and 3.1-b 

corresponding to the PICH and ICL would produce the same value for the above metric and Lieberherr 

et al.’s algorithm (Lieberherr et al., 1991) would not be able to choose between the two. In the first case, 

there is more multiple inheritance since both bottom classes inherit parts a and b from two other classes. 

It seems preferable in general to favor the second case where the common parts are put together and 

single inheritance is used for the two bottom classes. Given that the second design seems preferable, we 

could therefore try to minimize multiple inheritance by adding some measure of this to the metric M1. 

Using the amount of multiple inheritance was proposed as future research in (Lieberherr et al., 1991) . 

Although multiple inheritance is useful in some cases, it should only be used when necessary. All other 

things being equal, it seems reasonable to favor designs using less multiple inheritance. At the extreme 

case, if single inheritance is sufficient, it should be favored. To measure the amount of multiple 

inheritance, we can count the number of parents minus one for each class whose number of parents is 

greater than one. This measure will be called Mult  in the following. This amounts to giving double 

weight to parent edges except for the first one.  
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({ 1} ,{ c} ) ({ 2} ,{ d} )

({ 3} ,{ a} ) ({ 4} ,{ b} )

 

Figure 3.1-a. Design 1. 

 

({ 1} ,{ c} ) ({ 2} ,{ d} )

({ 3} ,{ a} ) ({ 4} ,{ b} )

(Ø,Ø)

 

Figure 3.1-b. Design 2. 

 

Another weakness of metric M1 is that it does not measure deviation from specialization. This is correct 

in the context of the algorithm used in (Lieberherr et al., 1991) because it always produces hierarchies 

which are consistent with specialization. Many have argued that the hierarchy should be consistent with 

specialization as much as possible to enhance understandability (Casais, 1991; Coleman et al., 1994; 

Korson & McGregor, 1992; Liskov, 1988). A rough measure of deviation from specialization could be 

produced by computing the difference between the union of methods of the class and its ancestors and the 

computed interface of the class. This reflects the cancellations and dependencies on canceled methods 

which affect the actual interface of a class. The measure is summed for each class in the hierarchy and the 

total is called Dev in the following. For the concept lattice and variants, Dev is always zero. One 

important drawback of this measure is that it does not penalize redefinitions which are not specializations. 

Clearly, this could be taken into account if the taxonomic relations between methods were known. 

However, since we do not have this data for our experiments, we have chosen not to penalize 

redefinitions. This does introduce a bias in favor of Smalltalk because there are some cases when the 

redefinitions are not specializations. 
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Adding measures for the amount of multiple inheritance and deviation from specialization to metric M1 

gives metric M2: 

 M2 = M1 + Mult + Dev. 

Adding these together is somewhat arbitrary and the relative weights of each part should depend on the 

goals of the design. Our tool does give the individual values for each aspect. 

 

4. Implementation and experiments 
 

4.1 Overview of the tool set 
 

A tool for producing the concept lattice and the variants described in the previous section was developed 

using ObjectWorks Smalltalk. The input, i.e. names of the classes and their properties, can come from 

external sources or can be extracted from the Smalltalk library itself. The properties can be ordered using 

a taxonomy. Many algorithms are implemented for building the various structures. All the algorithms are 

incremental. The algorithms can be used to add a new class, delete an existing class or update the 

specifications of a class and reflect the modifications on the hierarchies. If the designer wants to build a 

hierarchy from a batch of classes, we use the incremental algorithms to build the hierarchy incrementally 

by integrating the classes one by one. The resulting hierarchies can be examined and interactively refined 

using a graphical browser. The final result could be used to generate the code for the class hierarchy 

whereby each (Galois lattice) concept is mapped to a class declaration in a target language.  

 

A number of incremental algorithms based on (Godin et al., 1995d) have been implemented to update the 

CL. From the CL, the PICH can be generated. The algorithm for doing so is straightforward: it goes 

through each concept one by one and eliminates the unwanted concepts. We have also implemented an 

incremental algorithm based on (Godin et al., 1995b) to create and update the PICH directly without 

generating the CL. As will be shown later, the PICH  algorithm can be much more efficient than the CL 

algorithm in some cases. These algorithms have also been extended to handle taxonomic relationships 

between the properties as described in section 2.4. 
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Despite the flexibility and the performance of the above algorithms, it would be unrealistic to expect that 

the hierarchies produced be used as is. Instead, they should be considered as a starting point where all the 

potential commonalities have been extracted. However, the designer might consider eliminating such 

commonalities or  interactively delete concepts from the structures based on his/her subjective evaluation; 

the tool will automatically modify the hierarchy so that nothing is lost in the process. If the starting point 

is the CL, the empty classes are candidates for deletion. Empty classes are extreme cases, but near empty 

classes could also be considered. 

 

The tool also collects several measures related to the quality of the produced hierarchy. We have used 

these metrics to compare the hierarchies produced by our algorithms and sub-hierarchies of the Smalltalk 

library. The tool can compute the metrics for any subtree of the Smalltalk library taking into account an 

increasing number of classes by adding each class one by one using a depth first search of the hierarchy. 

In our experiment, the same classes are used in the same order to incrementally build the ICL and PICH.  

 

4.2 Building the interface hierarchy for the Smalltalk Collection library 
 

4.2.1 Extracting class interfaces 
 

The classification algorithms were applied to specifications of the classes extracted from the 

ObjectWorks\Smalltalk code. To extract such specifications, we used an approach similar to that taken by 

Cook (Cook, 1992). Extracting the interface (protocol) of a given class is more involved than simply 

computing the union of all selectors for methods defined by the class and its superclasses. For example, a 

subclass method may cancel a method inherited from its superclasses by redefining it to return an error. 

Many examples appear in Figure 2.4.2. For example the atPut method is canceled in class LinkedList by 

returning an error. The code of the canceling method simply consists of sending a special error method to 

the receiver of the message (self). This can be automatically detected by a simple syntactical analysis of 

the code of the  methods. Our tool starts out with the union of all selectors and then examines the 

corresponding method implementations to determine if they canceled inherited methods by providing an 

error notification ; such methods are eliminated from the interface of the class. 
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Another problem to resolve is typical of the conventional use of abstract classes. These classes include 

methods that return a typical error indicating they should be implemented by subclasses. However, other 

methods depend upon these methods. Thus, if the subclass does not implement a given method, then all 

methods depending on it must be removed from the interface. For example, the atAllPut method defined 

in the SequenceableCollection class uses the atPut method. By canceling the atPut method in the 

LinkedList class, the atAllPut cannot be executed. The arrow in Figure 2.4.2 illustrates this dependency. 

Figure 2.4.2 shows the interface and methods implemented for each class. The left-hand column lists the 

extracted interface specification. Selectors which are not inherited but defined in the class appear in bold. 

Canceled selectors appear in gray and italic. The right-hand column shows which method is defined in the 

class. Cancellations are indicated by following the name of the method with a slash and a reference to the 

name of the error raised by the method. Dependencies on unimplemented methods occur very often in the 

Smalltalk classes, and are a source of confusion in trying to understand their behavior. The hierarchies 

produced with our algorithms are consistent with specialization and are thus guaranteed to avoid any 

cancellation. 

 

The previous approach to computing the interface evidently relies on the fact that consistent method 

cancellation conventions are used throughout the library, which seems to be largely true. There are some 

difficult cases however, where the error messages sent depend on the class of the executing object. Some 

of these were treated as special cases in our tool. Other dependencies which would not follow these 

conventions are not taken into account. Therefore the extracted interface may in some cases be 

approximate. 

 

Our prototype can produce specifications of the interface and/or implementations of the method selectors 

in the interface for any subset of classes which is a subtree of the inheritance hierarchy. From the set of 

class specifications extracted, the user can then incrementally generate class hierarchies using the 

algorithms. When the specification is limited to the interface for each class, the generated hierarchy 

corresponds to the interface hierarchy as in the examples based on Figure 2.1.1. The implementation 
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specifications are in the same format as the example in Figure 2.4.1. For each method x in the interface of 

the class, the tool gives an identifier for the implementation used in the format xi where i is a sequence 

number from 1 to n, n being the number of different implementations encountered. In addition, the 

taxonomy is generated relating each implementation xi to the abstract interface x. The user can then 

generate the hierarchies for the interface alone or for both the interface and implementation specifications 

by using the taxonomy. It is also possible to generate the hierarchies based on the implementations alone. 

The result would be useful to reorganize the hierarchy in order to obtain zero code redundancy. The 

result might contain some interface redundancy however. Depending on the priorities of the designer, this 

might be a valuable compromise because the number of classes is smaller. In our experiments, both 

possibilities are examined. 

 
4.2.2 Time performance of the incremental algorithms 

 

Figure 3.2 shows the CPU time for generating various structures using the incremental algorithms. The 

Figure contains data for the interface specifications alone (ICL-Int, PICH-Int), the implementation 

specifications alone (ICL-Imp, PICH-Imp) and the two used together (PICH-Int+Imp). The time for 

generating the ICL-Int+Imp does not appear because it is much larger and we would not be able to 

distinguish the others when combined on the same Figure. In this experiment, the PICH can be generated 

much more efficiently than the ICL for every combination. One interesting fact is that although the impact 

of using the taxonomic relationship is very high for the ICL (the time to add a class to the ICL-Int+Imp is 

about 50 times as large as the time to add a class to the ICL-Imp), it is relatively small for the PICH 

algorithm (about 10% difference).  
 

4.2.3 Comparing hierarchies using metric values 
 

Figure 3.3 shows metric M2 for: 

1)  the sub-hierarchy of 64 classes rooted at the Collection class in the Smalltalk library 

(including a few classes of our own),  

2)  the inheritance concept lattice combining implementation and interface specifications using a 

taxonomic relationship (ICL-Imp+Int) 
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3)  the pruned inheritance concept hierarchy combining implementation and interface 

specifications using a taxonomic relationship (PICH-Imp+Int) 

Figure 3.3 shows the evolution of the metric as new classes are considered. This helps to reveal the trend 

in the growth pattern. As can be observed from the figure, the PICH shows the best results. The trend 

shows that the difference gets larger as the number of classes grows. The ICL is better than Smalltalk 

when the number of classes is limited. However, when the number of classes grows past 40, the ICL gets 

worse. The additional complexity of the empty classes seems to become prohibitive when the number of 

potential combinations of common properties gets large. This phenomenon may be especially true in the 

domain of Collection classes which are tightly connected to each other. 

 

The good behavior of the PICL compared to the ICL also means that the actual occurrences of the 

pattern presented in Figures 2.3.2 and 2.3.3 are not very frequent. Most of the time the empty classes add 

to the complexity of the inheritance graph. This is the case for our example hierarchy in Figure 2.2.2. 

From the point of view of its children, Dictionary and LinkedList, The IndexedExtensibleCollection 

empty class is not necessary because all the method selectors inherited from 

IndexedExtensibleCollection by the children, namely {at, add}, are also inherited from others paths 

(repeated inheritance). Therefore, in the PICL, the empty class IndexedExtensibleCollection is simply 

removed with its inheritance edges without having to add any other inheritance edge. Given that in some 

cases the empty classes may be useful, we might want to consider an intermediary structure between the 

ICL and PICH which only keeps some empty classes based on some criteria. We plan to study this venue 

in future work. 

 

We have made similar comparisons on other sub-hierarchies and observed similar patterns. However, 

these results should not be interpreted as a direct evaluation of the ObjectWorks\Smalltalk class 

hierarchy. One obvious point is that ObjectWorks\Smalltalk is limited to single inheritance which usually 

will result in designs having either redundancy or deviation from specialization or both. The Smalltalk 

library is used here as an example of the behavior of the algorithms on non trivial cases. 
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4.2.4 Observations 

 

As previously mentioned, one important limitation of these experiments is that we distinguish between 

several implementations of the same selector simply by considering each method declaration as a different 

method unrelated to other methods. There are some cases where methods which are declared 

independently are in fact behaviorally equivalent or related by specialization. The quality of the produced 

hierarchies would be better if this information could be taken into account in the hierarchy building 

process. However, because of the difficulty of extracting this information from the code, we did not take 

it into consideration in our experiments. We have also explained how metric M2 should be enhanced by 

penalizing redefinitions that are not consistent with specialization. When information concerning how 

methods are related is available, it could be exploited by the algorithms. Typed object-oriented languages 

offer some better potential to exploit in this perspective and further experiments should be performed on 

such languages. 

 

A related problem with the experiments is that the process relies on the quality of the naming 

conventions. It considers two methods with the same selector as being semantically related and 

conversely, different names are assumed to be unrelated. Here again the use of formal specifications could 

be used to detect these problems. 

 

4.3 Organizing specifications from a (telecom. network) management information base 

 

Another experiment was performed on a class hierarchy designed for a network management application 

within the IGLOO project. The objective was to produce an object model for Management Information 

Bases (MIB) using standard, publicly available specifications. Only the attributes were specified in the 

model. The initial manual design was implemented in Smalltalk and the algorithms were used to 

reengineer the class hierarchy. Several undetected commonalities in the initial design were revealed by the 

tool and were incorporated in the final design. Figure 3.3 shows metric M2 for the initial design, the ICL 

and the PICH. Here again the PICH gives the best result. As opposed to the Smalltalk data, the behavior 
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of the ICL is also always better than the initial design. Because of the different configuration of the data, 

the number of empty classes does not grow as fast as for the previous experiment. The differences 

between the designs are not as large as for the Smalltalk data because the classes are not as tighly 

connected are there are less commonalities to uncover and factor out. 
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Figure 3.3. Metric M2 for implementation and interface (Int-Imp) hierarchy for Collection classes. 
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Figure 3.2. Total CPU time for incremental generation of hierarchies. 
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Figure 3.4. Metric M2 for MIBs application. 
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4. Conclusion 
 

Several structures useful for the analysis and design of class hierarchies were presented in the framework 

of the theory of concept lattices. The variants are the result of introducing inheritance, pruning of empty 

classes and taxonomic relations between class properties. The resulting structures guarantee that the class 

hierarchies are void of any redundancy and are consistent with specialization. A prototype tool for 

computing hierarchies based on class specifications has been developed. The tool also computes several 

metrics to better assess the characteristics of the hierarchies. Several experiments were performed. One 

experiment, described in this paper,  was performed on the Collection classes of the ObjectWorks\ 

Smalltalk class library. Another experiment was performed on a set of class specifications from the 

domain of telecommunication  network management application. 

 

The experiments showed that the pruned concept (Galois) hierarchy scored best (lowest) with respect to 

construction time. For instance, the algorithm that we developed for computing the pruned hierarchy 

incrementally turned out to be much more efficient that the concept lattice incremental algorithm in the 

experiments. Similarly, the pruned concept hierarchy scored best (lowest) with respect the structural 

quality metrics. In the case of the Smalltalk class library, it appears that the reduction of complexity due 

to the removal of the empty classes more than offset the additional complexity corresponding to the 

additional multiple inheritance introduced by such removal. 

 

These results of our experiments are encouraging, and we should continue refining our framework and 

experimenting with it. One interesting venue consists of trying to automate the choice of empty classes to 

prune from the concept lattice based on some objective criteria. At the present time they are either all 

kept with the concept lattice or all pruned with the pruned concept hierarchy. Between these two 

extremes are a large number of potential designs that can be generated by pruning only a well chosen 

subset of the empty concepts. At the present time, the user can interactively prune undesired classes. One 

avenue we are currently exploring is to try to at least partially automate the pruning process. 
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Another venue would try to apply the algorithms on richer class representations. Experiments on libraries 

from typed languages where typing information is available is one promising direction. On the other hand, 

the current interest in formal specifications for classes (Cheon & Leavens, 1994; Parisi-Presicce & 

Pierantonio, 1994) suggests that these might be used in a larger scale in the future and could be exploited 

by classification algorithms. 
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